| aggregated {opm} | R Documentation | 
Get the aggregated kinetic data or the aggregation
settings used. (See do_aggr for generating
aggregated data.)
  ## S4 method for signature 'MOPMX'
aggr_settings(object, join = NULL) 
  ## S4 method for signature 'OPMA'
aggr_settings(object, join = NULL) 
  ## S4 method for signature 'OPMS'
aggr_settings(object, join = NULL) 
  ## S4 method for signature 'MOPMX'
aggregated(object, ...) 
  ## S4 method for signature 'OPMA'
aggregated(object, subset = NULL, ci = TRUE,
    trim = c("no", "full", "medium"), full = FALSE, in.parens = TRUE,
    max = opm_opt("max.chars"), ...) 
  ## S4 method for signature 'OPMS'
aggregated(object, ...) 
object | 
|
subset | 
 Character vector. If not   | 
ci | 
 Logical scalar. Include the estimates of confidence intervals (CIs) in the output?  | 
trim | 
 Character scalar. Parameter estimates from intrinsically negative reactions (i.e., no respiration) are sometimes biologically unreasonable because they are too large or too small, and some corrections might be appropriate. 
 Currently the other parameters are not checked, and all
  | 
full | 
 Logical scalar passed to   | 
in.parens | 
 Logical scalar also passed to that function.  | 
max | 
 Numeric scalar also passed to that function.  | 
join | 
 Empty or character scalar. If empty, a list
is returned; a nested list in the case of
 
  All other
values of   | 
... | 
 Optional arguments passed between the methods
or to   | 
Note that the conversion of the settings list to a matrix
or data frame might not work for all combinations of
object and join, mainly because the options
entry can hold arbitrary content. For similar conversions
of the metadata, see the OPMX methods of
to_metadata.
aggregated yields a numeric matrix of aggregated
values (a.k.a. the curve parameters). If bootstrapping
was used, their CIs are included. The columns
represent the wells, the rows the estimated parameters
and their CIs.
aggr_settings returns a named list if join
is empty. Other values yield a matrix or data frame (or
an error). See the description of the argument above and
the examples below for further details.
Other getter-functions: anyDuplicated,
anyNA, contains,
csv_data, dim,
disc_settings, discretized,
duplicated, has_aggr,
has_disc, hours,
max, measurements,
minmax, seq,
subset, thin_out,
well
# 'OPMA' methods
# Get full matrix
(x <- aggregated(vaas_1))[, 1:3]
##                          A01           A02           A03
## mu                  4.070829     7.5624410    16.4848300
## lambda             18.523010     0.5628715     1.7110130
## A                 123.455800   248.1809000   284.0994000
## AUC              8918.137000 18391.5900000 21960.0800000
## mu CI95 low         3.971357     6.4975400    15.1024400
## lambda CI95 low    -7.194295   -33.9691600    -0.7143524
## A CI95 low        122.886200   247.4527000   283.8384000
## AUC CI95 low     8846.238000 18255.3400000 21808.5600000
## mu CI95 high       10.581020    16.4906500    21.9867000
## lambda CI95 high   82.911920    73.6234100     2.6739110
## A CI95 high       125.714400   249.5763000   285.3661000
## AUC CI95 high    8944.920000 18453.3300000 22040.5700000
stopifnot(is.matrix(x), dim(x) == c(12, 96))
(y <- aggregated(vaas_1, full = TRUE))[, 1:3] # full names
##                  A01 (Negative Control) A02 (Dextrin) A03 (D-Maltose)
## mu                             4.070829     7.5624410      16.4848300
## lambda                        18.523010     0.5628715       1.7110130
## A                            123.455800   248.1809000     284.0994000
## AUC                         8918.137000 18391.5900000   21960.0800000
## mu CI95 low                    3.971357     6.4975400      15.1024400
## lambda CI95 low               -7.194295   -33.9691600      -0.7143524
## A CI95 low                   122.886200   247.4527000     283.8384000
## AUC CI95 low                8846.238000 18255.3400000   21808.5600000
## mu CI95 high                  10.581020    16.4906500      21.9867000
## lambda CI95 high              82.911920    73.6234100       2.6739110
## A CI95 high                  125.714400   249.5763000     285.3661000
## AUC CI95 high               8944.920000 18453.3300000   22040.5700000
stopifnot(x == y, nchar(colnames(x)) < nchar(colnames(y)))
# Subsetting
(x <- aggregated(vaas_1, "lambda"))[, 1:3]
##                        A01         A02        A03
## lambda           18.523010   0.5628715  1.7110130
## lambda CI95 low  -7.194295 -33.9691600 -0.7143524
## lambda CI95 high 82.911920  73.6234100  2.6739110
stopifnot(is.matrix(x), dim(x) == c(3, 96), any(x < 0))
# Now with lambda correction
(x <- aggregated(vaas_1, "lambda", trim = "full"))[, 1:3]
##                       A01        A02      A03
## lambda           18.52301  0.5628715 1.711013
## lambda CI95 low   0.00000  0.0000000 0.000000
## lambda CI95 high 82.91192 73.6234100 2.673911
stopifnot(is.matrix(x), dim(x) == c(3, 96), !any(x < 0))
# settings
(x <- aggr_settings(vaas_1)) # yields named list
## $method
## [1] "grofit"
## 
## $options
## $options$neg.nan.act
## [1] FALSE
## 
## $options$clean.bootstrap
## [1] TRUE
## 
## $options$suppress.messages
## [1] TRUE
## 
## $options$fit.opt
## [1] "s"
## 
## $options$log.x.gc
## [1] FALSE
## 
## $options$log.y.gc
## [1] FALSE
## 
## $options$interactive
## [1] FALSE
## 
## $options$nboot.gc
## [1] 100
## 
## $options$smooth.gc
## NULL
## 
## $options$smooth.dr
## NULL
## 
## $options$have.atleast
## [1] 6
## 
## $options$parameter
## [1] 9
## 
## $options$log.x.dr
## [1] FALSE
## 
## $options$log.y.dr
## [1] FALSE
## 
## $options$nboot.dr
## [1] 0
## 
## $options$model.type
## [1] "logistic"     "richards"     "gompertz"     "gompertz.exp"
## 
## 
## $software
## [1] "opm"
## 
## $version
## [1] "0.1-0"
stopifnot(is.list(x), !is.null(names(x)))
(x <- aggr_settings(vaas_1, join = "json")) # yields a matrix
##      method  
## [1,] "grofit"
##      options                                                                                                                                                                                                                                                                                                                                                                            
## [1,] "{\"neg.nan.act\":false,\"clean.bootstrap\":true,\"suppress.messages\":true,\"fit.opt\":\"s\",\"log.x.gc\":false,\"log.y.gc\":false,\"interactive\":false,\"nboot.gc\":100,\"smooth.gc\":null,\"smooth.dr\":null,\"have.atleast\":6,\"parameter\":9,\"log.x.dr\":false,\"log.y.dr\":false,\"nboot.dr\":0,\"model.type\":[\"logistic\",\"richards\",\"gompertz\",\"gompertz.exp\"]}"
##      software version
## [1,] "opm"    "0.1-0"
stopifnot(is.matrix(x), is.character(x), nrow(x) == 1)
# 'OPMS' methods
summary(x <- aggregated(vaas_4)) # => one matrix per OPM object
##      Length Class  Mode   
## [1,] 1152   -none- numeric
## [2,] 1152   -none- numeric
## [3,] 1152   -none- numeric
## [4,] 1152   -none- numeric
stopifnot(is.list(x), length(x) == length(vaas_4), sapply(x, is.matrix))
# settings
summary(x <- aggr_settings(vaas_4)) # list of named lists, one per plate
##      Length Class  Mode
## [1,] 4      -none- list
## [2,] 4      -none- list
## [3,] 4      -none- list
## [4,] 4      -none- list
stopifnot(is.list(x), length(x) == length(vaas_4), sapply(x, is.list))
(x <- aggr_settings(vaas_4, join = "yaml")) # matrix, one row per plate
##      method  
## [1,] "grofit"
## [2,] "grofit"
## [3,] "grofit"
## [4,] "grofit"
##      options                                                                                                                                                                                                                                                                                                                          
## [1,] "---\nneg.nan.act: no\nclean.bootstrap: yes\nsuppress.messages: yes\nfit.opt: s\nlog.x.gc: no\nlog.y.gc: no\ninteractive: no\nnboot.gc: 100.0\nsmooth.gc: ~\nsmooth.dr: ~\nhave.atleast: 6.0\nparameter: 9.0\nlog.x.dr: no\nlog.y.dr: no\nnboot.dr: 0.0e+00\nmodel.type:\n- logistic\n- richards\n- gompertz\n- gompertz.exp\n\n"
## [2,] "---\nneg.nan.act: no\nclean.bootstrap: yes\nsuppress.messages: yes\nfit.opt: s\nlog.x.gc: no\nlog.y.gc: no\ninteractive: no\nnboot.gc: 100.0\nsmooth.gc: ~\nsmooth.dr: ~\nhave.atleast: 6.0\nparameter: 9.0\nlog.x.dr: no\nlog.y.dr: no\nnboot.dr: 0.0e+00\nmodel.type:\n- logistic\n- richards\n- gompertz\n- gompertz.exp\n\n"
## [3,] "---\nneg.nan.act: no\nclean.bootstrap: yes\nsuppress.messages: yes\nfit.opt: s\nlog.x.gc: no\nlog.y.gc: no\ninteractive: no\nnboot.gc: 100.0\nsmooth.gc: ~\nsmooth.dr: ~\nhave.atleast: 6.0\nparameter: 9.0\nlog.x.dr: no\nlog.y.dr: no\nnboot.dr: 0.0e+00\nmodel.type:\n- logistic\n- richards\n- gompertz\n- gompertz.exp\n\n"
## [4,] "---\nneg.nan.act: no\nclean.bootstrap: yes\nsuppress.messages: yes\nfit.opt: s\nlog.x.gc: no\nlog.y.gc: no\ninteractive: no\nnboot.gc: 100.0\nsmooth.gc: ~\nsmooth.dr: ~\nhave.atleast: 6.0\nparameter: 9.0\nlog.x.dr: no\nlog.y.dr: no\nnboot.dr: 0.0e+00\nmodel.type:\n- logistic\n- richards\n- gompertz\n- gompertz.exp\n\n"
##      software version
## [1,] "opm"    "0.1-0"
## [2,] "opm"    "0.1-0"
## [3,] "opm"    "0.1-0"
## [4,] "opm"    "0.1-0"
stopifnot(is.matrix(x), is.character(x), nrow(x) == 4)