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Abstract

This is the substrate-information tutorial of opm in the version of March 3, 2016. The
stored information on the known Phenotype Microarray (PM) substrates is explained, as
well as the methods available to query this information. IDs for a variety of databases
are stored within opm and can be used to conduct web queries to obtain comprehensive
information on the substrates of interest. We show how these data can be used to visualise
results from PM experiments, including the outcome from advanced multiple-comparison
statistics, within biochemical pathway maps. Visually comparing genome annotation
and PM results is easily possible in that manner. Moreover, methods are described to
automatically detect the substrate features that potentially explain a given experimental
outcome. This includes determining the relevant pathways to be used in the visualisations.
The final chapters of this tutorial provide examples for the powerful feature-selection
approaches available within R with a focus on state-of-the-art boosting implementations.

Keywords: Respiration Kinetics, Pathways, Feature Selection, Boosting, CAS, MeSH, ChEBI,
MetaCyc, KEGG, SEED, pathview, mboost.

1. Introduction

A detailed description of the OmniLog➤ Phenotype Microarray (PM) system, its measur-
ing procedure and data characteristics are found in the vignette “opm: An R Package for
Analysing Phenotype Microarray and Growth Curve Data” (called “main tutorial” in the fol-
lowing). The description of the methods below presupposes that the user is familiar with
the usage of opm and has studied the main tutorial as well as the entries of the opm manual
relevant to her or his research. Especially the concepts behind, and the methods available
for, the different classes of opm objects should be known before starting with this tutorial.

In addition to visual inspection or statistical comparative analyses of PM data, as described
in the main tutorial, users might be interested in specific information on the substrates used
in PM assays. The opm package contains a large variety of additional data on PM substrates.
Beside methods for assessing this information directly, this tutorial introduces strategies for
visualising the measured PM results by mapping them on pathway maps. Furthermore,
analysis methods are described for modelling the effect of substrate features on the PM
results and thus, e.g., for the identification of those pathways that are particularly suitable
for visualising the PM results in pathway graphs.

2. Preparation
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For just downloading information from Kyoto Encyclopedia of Genes and Genomes (KEGG)
(see Section 3.1), install the Bioconductor package KEGGREST. It needs not be loaded into
your R session. For also drawing PM information into KEGG pathway maps (see Section 4),
install the Bioconductor package pathview and load it into your session. Note that it is impor-
tant to load pathview before opm, which is needed throughout this tutorial, since otherwise
some methods are not visible and the package does not work properly. In this vignette this
is enforced by optionally detaching opm and loading it (again) as follows:

R> suppressPackageStartupMessages(library("pathview"))

R> if ("package:opm" %in% search())

detach("package:opm", unload = TRUE)

R> library("opm")

R> data(vaas_et_al, package = "opmdata")

3. Accessing plate and substrate information

The opm package contains a number of functions suitable for accessing stored information on
entire plates and on the substrates within certain wells.

3.1. Available plate information

Currently substrate layouts of various plates are available within opm. An overview of the
plate types available in the respective version of opm is obtained by entering

R> plate_type(full = TRUE)

The resulting vector of names does not only include OmniLog➤ plates; see the manual and
the main tutorial for further details. Using other values for full, or additional arguments,
distinct spelling variants of the plate names can be obtained.

3.2. Available substrate information

In the manual these functions are assigned to the family “naming-functions” with according
cross-references.

One usually would start a search by determining the exact spelling of an internally used name
with find_substrate:

R> substrates <- find_substrate(c("Glutamine", "Glutamic acid"))

R> substrates

The result is a list (of the S3 class “substrate match”) containing character vectors with the
results for each query name as values. Surprisingly, nothing was found for “Glutamic acid”
but several values for “Glutamine”. The default search argument is “exact”, which is exact
(case-sensitive) matching of parts of the names. One might want to use“glob”searching mode:

R> substrates <- find_substrate(c("L-Glutamine", "L-Glutamic acid"), "glob")

R> substrates

http://bioconductor.org/
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But with so-called wild-cards, i.e. “*” for zero to many and“?” for a single arbitrary character
the search is more flexible:

R> substrates <- find_substrate(c("*L-Glutamine", "*L-Glutamic acid"), "glob")

R> substrates

This fetches all terms that end in either query character string, and does so case-insensitively.
Advanced users can apply the much more powerful regex and approx search modes, which
are described in the manual.

Note that opm appends a concentration (or just repetition) indicator as a number after a
hash sign (“#”) to the substrate names wherever necessary. Thus a wild-card “*” at the end
of a name might often by the most useful search pattern.

Once the internally used names (which are not guaranteed to be stable between distinct
opm releases) have been found, information on the substrates can be queried such as their
occurrences and positions on plates:

R> positions <- find_positions(substrates)

R> positions

This yields a nested list containing two-column matrices with plate names in the first and
well coordinates in the second column. Using the type argument, search can be restricted
to a plate type of interest, which would yield a named vector. References to external data
resources for each substrate name can be obtained using substrate_info:

R> subst.info <- substrate_info(substrates)

R> subst.info

By default this yields Chemical Abstracts Service (CAS) numbers (http://www.cas.org/
content/chemical-substances/faqs), but Medical Subject Headings (MeSH) names (use-
ful for conducting PubMed queries; see http://www.ncbi.nlm.nih.gov/mesh/) (Coletti and
Bleich 2001), Chemical Entities of Biological Interest (ChEBI) IDs (Hastings, de Matos,
Dekker, Ennis, Harsha, Kale, Muthukrishnan, Owen, Turner, Williams, and Steinbeck 2013),
KEGG compound IDs, KEGG drug IDs (Kanehisa, Goto, Furumichi, Tanabe, and Hirakawa
2010), MetaCyc compound IDs (Caspi, Altman, Dreher, Fulcher, Subhraveti, Keseler, Kothari,
Krummenacker, Latendresse, Mueller, Ong, Paley, Pujar, Shearer, Travers, Weerasinghe,
Zhang, and Karp 2012) and SEED compound IDs (Overbeek, Begley, Butler, Choudhuri,
Chuang, Cohoon, de Crecy-Lagard, Diaz, Disz, Edwards, Fonstein, Frank, Gerdes, Glass,
Goesmann, Hanson, Iwata-Reuyl, Jensen, Jamshidi, Krause, Kubal, Larsen, Linke, McHardy,
Meyer, Neuweger, Olsen, Olson, Osterman, Portnoy, Pusch, Rodionov, Rueckert, Steiner,
Stevens, Thiele, Vassieva, Ye, Zagnitko, and Vonstein 2005) have also been collected for the
majority of the substrates. Using the “browse” argument, full URLs can be created and op-
tionally also directly opened in the default web browser. Using the “download” argument, if
KEGG drug or compound IDs have been selected, these can be downloaded from the KEGG
server (if the KEGGREST package is available) and converted into customised objects. It is
possible to nicely display all available information at once:

R> subst.info <- substrate_info(substrates, "all")

R> subst.info

http://www.cas.org/content/chemical-substances/faqs
http://www.cas.org/content/chemical-substances/faqs
http://www.ncbi.nlm.nih.gov/mesh/
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Another use of substrate_info is to convert substrate names to lower case but protecting
name components such as abbreviations or chemical symbols, as described in the manual.

4. Visualisation of PM information within pathway maps

In conjunction with other R packages, it is possible to visualise PM results directly in al-
ready existing pathway maps as, for example, those from KEGG. These maps are essentially
manually drawn biochemical pathway maps representing the currently available knowledge
on substrates, enzymes and genes and their connections within pathways. Depending on
the availability of genome and gene-annotation information within KEGG, organism-specific,
individual maps can be obtained (Kanehisa et al. 2010).

The mapping itself works by using information produced by opm for a colour coding of the
nodes (here, representing the substrates) within those maps, as can be done similarly with
several other types of “OMICS” data such as transcriptomics or proteomics data. For details,
see the description on the KEGG website (http://www.genome.jp/kegg/).

4.1. Providing suitable input data

The work flow starts with either an OPMX object containing the aggregated values or the result
from an opm_mcp analysis. The first step in both cases is to convert the data into a suitable
format, which is a named vector created by the function annotated.

R> x <- annotated(vaas_1)

R> head(x)

<NA> C00721 C00208 C01083 C00185 C08240

123.4558 248.1809 284.0994 269.7548 180.7536 287.7959

The resulting vector contains the numeric values (selected parameter estimates or opm_mcp re-
sults, as explained below) as well as an annotation of the according substrates. For substrates
such as “Positive Control” or “pH 5” no KEGG Identifier (ID) is available, which results in NA

values in the vector. Accordingly, those substrates cannot be marked within pathway maps
(see section 4.2.1). The what argument, passed as eponymous argument to substrate_info,
selects the kind of information to be used for the annotation. With annotated used with how

= "value" a numeric matrix including the substrate names as row names and first column
indicating the mean of chosen computed values is provided. Further columns indicate the oc-
currence of a certain substrate in a pathway map or the affiliation to a certain class, e.g. “Car-
bohydrates”. This information is in analogy to the download argument of substrate_info
but with conversion to a numeric matrix. For usage of argument how, please refer to section 5.

Although annotated works directly on OPMX objects containing aggregated data for single
plates or bundles of plates, please note, that the output allows for only one value per substrate.
Thus, when applying annotated to a set of plates, make sure that only one experimental group
is comprised, since the resulting values are averaged per well over all plates in the input object.
Using the output argument, one can select the parameter of interest, for example area under
the curve instead of maximum height:

R> x <- annotated(vaas_1, output = param_names()[4])

R> head(x)

http://www.genome.jp/kegg/
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Figure 1: Point estimates and 95% confidence intervals in a manually defined comparison
of group means for a specifically selected set of wells from the vaas_4 exemplar object. In
this procedure each selected well is compared against A05. The picture was obtained by
running opm_mcp and then the plotting function for the resulting opm glht object. See the
main tutorial for details.

<NA> C00721 C00208 C01083 C00185 C08240

8918.137 18391.590 21960.080 18531.180 11831.150 19254.160

Visualisation of the results of an opm_mcp analysis is also possible, which offers more (statisti-
cally interesting) opportunities for making sense of the PM data in the context of pathways.
However, this method only makes sense if each coefficient estimated by opm_mcp can be linked
to a single substrate. This is usually only possible for the “Dunnett” and “Pairs” type of con-
trasts if applied to the wells (see Section 4.2.3). See the main tutorial and the manual for
details on this restriction.

The results from an opm_mcp procedure are treated with annotated as shown before with an
OPMX object, but additional options are available. In the following example, first an opm glht

object is generated from the vaas_4 exemplar object by performing a Dunnett-type multiple
comparison of the selected 13 wells against well A05 as control group. The comparison applies
to the default parameter given by opm_opt("curve.param"); see the manual for details.

R> x <- opm_mcp(vaas_4[, , 1:15], output = "mcp", model = ~ Well,

linfct = c(Dunnett.A05 = 1), full = FALSE)

The resulting 95% confidence intervals for the difference of means are plotted in Figure 1.

Using the above generated opm glht object, the options modifying the output of annotated
will be illustrated. Apparently only three comparisons exhibit a statistically significant dif-
ference, namely the comparisons A10 - A05, A11 - A05 and A12 - A05, all showing that the
reactions in A05 are weaker than those in A10, A11 and A12, respectively.



6 Substrates in opm (March 3, 2016)

Using the output argument, users are able to obtain various statistically relevant categorical
results instead of the simple numerical output of the respective point estimator. The options
upwards and downwards result in a classification into three categories (FALSE, NA, or TRUE).
These indicate whether or not the cut-off (zero per default) is included in the confidence
interval (NA) and thus a decision possible. If not, the category indicates the direction of
the shift relative to the cut-off. The options different, smaller, larger and equal work
similarly, but use only the two categories TRUE and FALSE. Please note that the underlying
test seeks for differences and thus the results always have to be interpreted regarding the
significance (and magnitude) of these differences; “insignificantly different” does not mean
“significantly equal”!

Short-cuts are available for all output-options, enabling the user to set the cut-off together
with the kind of output. See the manual for details.

A comprehensive overview of the possible results for object x is shown in the following data
frame:

Comparison numeric upwards downwards different equal smaller larger

1 A01 - A05 1.577317 NA NA FALSE TRUE FALSE FALSE

2 A02 - A05 57.274661 NA NA FALSE TRUE FALSE FALSE

3 A03 - A05 26.661023 NA NA FALSE TRUE FALSE FALSE

4 A04 - A05 34.537328 NA NA FALSE TRUE FALSE FALSE

5 A06 - A05 25.078779 NA NA FALSE TRUE FALSE FALSE

6 A07 - A05 -1.606236 NA NA FALSE TRUE FALSE FALSE

7 A08 - A05 -8.458879 NA NA FALSE TRUE FALSE FALSE

8 A09 - A05 -4.975284 NA NA FALSE TRUE FALSE FALSE

9 A10 - A05 247.470724 TRUE FALSE TRUE FALSE FALSE TRUE

10 A11 - A05 245.163382 TRUE FALSE TRUE FALSE FALSE TRUE

11 A12 - A05 250.763650 TRUE FALSE TRUE FALSE FALSE TRUE

12 B01 - A05 5.417463 NA NA FALSE TRUE FALSE FALSE

13 B02 - A05 27.079437 NA NA FALSE TRUE FALSE FALSE

14 B03 - A05 15.870312 NA NA FALSE TRUE FALSE FALSE

All these results are obtained with the setting how = "ids"; for the usage of how = "value"

see Section 5.

4.2. Visualisation in pathway maps using pathview

4.2.1. Visualisation of group means in pathway maps

Here we will use the function pathview from the package of the same name (Luo and Brouwer
2013). This function can download a user-defined pathway graph from KEGG, optionally
integrate additional data from other sources, and render the result. For integrating experi-
mental data from other “OMICS” approaches (such as transcriptomics and proteomics), see
the corresponding chapter in the pathview vignette for details.

Here the pathview function serves for integrating and visualising information produced by
opm and provided by annotated. The user only has to specify the pathway and provide
the opm data. All other necessary steps (download of pathway graph data as XML file from
KEGG, parsing of this data file, integrating user-defined data into the pathway representation,
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and rendering of final output graphics) are automatically conducted by pathview. See the
pathview vignette for technical details.

In the case of KEGG, a pathway map is described as “a molecular interaction/reaction
network diagram represented in terms of the KEGG Orthology (KO) groups” (see http:

//www.genome.jp/kegg/kegg3a.html for further details). KEGG contains a collection of
distinct types of pathway maps identified by a code containing between two and four letters
as a prefix, followed by five digits.

The prefixes have the following meanings:

map - Reference pathway

ko - Reference pathway (KO)

ec - Reference pathway (Enzyme Commission (EC))

rn - Reference pathway (Reaction)

org - Organism-specific pathway map (org is a wild-card for the organism-specific ab-
breviation composed of two to four letters)

Only the first reference pathway map is drawn manually; all other maps are computation-
ally generated. The ko maps contain the manually defined ortholog groups (ko entries)
for all proteins and functional RNA molecules that correspond to KEGG pathway nodes,
BRITE hierarchy nodes, and KEGG module nodes. The ko entries are converted to gene
ID if organism-specific pathways maps are generated. A list of the existing maps and their
corresponding numbers are available on the KEGG homepage (see above).

pathview allows only for using KEGG orthology (the ko maps) or species-specific letter
codes. See http://www.genome.jp/kegg/catalog/org_list.html for an up-to-date list of
organisms with complete genome information in KEGG.

A vector as returned by annotated (see Section 4.1) serves as input for the visualisation
procedure based on pathview. For demonstration purposes, we use subsets of vaas_et_al
containing the Escherichia coli strains from the first biological repetition.

R> coli.sub <- subset(vaas_et_al, list(Species = "Escherichia coli",

Experiment = "First replicate"))

R> coli.k12 <- subset(coli.sub, list(Strain = "DSM18039"))

R> coli.type <- subset(coli.sub, list(Strain = "DSM30083T"))

Afterwards we create the annotated vectors containing the average maximum curve heights
for the two groups separately:

R> anno.k12 <- annotated(coli.k12)

R> anno.type <- annotated(coli.type)

For a more convenient drawing of opm data on KEGG pathway maps, we suggest a wrapper
for the pathview function, providing other default settings for some arguments. All graphics
below are produced using this wrapper, but the user is of course free to use the original
pathview function or write an alternative wrapper.

http://www.genome.jp/kegg/kegg3a.html
http://www.genome.jp/kegg/kegg3a.html
http://www.genome.jp/kegg/catalog/org_list.html
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R> opm_path <- function(cpd.data, gene.data = NULL,

high = list(gene = "green4", cpd = "blue"),

mid = list(gene = "lightsteelblue1", cpd = "yellow"),

low = list(gene = "white", cpd = "yellow"),

species = "ko", out.suffix = "non-native",

key.pos = "topright", afactor = 1000,

limit = list(gene = 2, cpd = 400),

bins = list(gene = 0.5, cpd = 40),

both.dirs = list(gene = FALSE, cpd = FALSE),

sign.pos = "topleft", cpd.lab.offset = 0,

same.layer = FALSE,

na.col = "white", ...) {

pathview(cpd.data = cpd.data, gene.data = gene.data,

high = high, mid = mid, low = low,

species = species, out.suffix = out.suffix, key.pos = key.pos,

afactor = afactor, limit = limit, bins = bins,

both.dirs = both.dirs, sign.pos = sign.pos,

cpd.lab.offset = cpd.lab.offset, same.layer = same.layer,

na.col = na.col, ...)

}

The data for the two strains are shown on the correspondingly separated maps in Figure 2
and 3.

R> coli.map.k12 <- opm_path(cpd.data = anno.k12, species = "ko",

out.suffix = "k12.ko", pathway.id = "00052")

R> coli.map.type <- opm_path(cpd.data = anno.type, species = "ko",

out.suffix = "type.ko", pathway.id = "00052")

Note particularly the substrates Raffinose, Stachyose and Sucrose (in the middle of the map),
which exhibit large respiratory differences, while Sorbitol (on the very left of the map) yields
only small respiratory differences between the two strains.

Using the default settings, pathview yields a raster image in Portable Network Graph-
ics (PNG) format, which is stored in the current working directory and shown in Figure 2 and
3. For demonstration purposes the pathway number “00052”, which encodes for the Galac-
tose metabolism pathway map, is chosen. Genes (boxes) are annotated with KEGG ontology
numbers (set by choosing species = "ko"), where available or, alternatively, with EC num-
bers. Note that the species arguments offers the possibility to use species-specific genome
information available in the KEGG directory; see above for the letter codes and below for
an application example. The substrates (circles) in the maps get standard compound names,
which are automatically retrieved from the ChEMBL database using the compound IDs.

The data for the two strains can be shown analogously using the categorical output of
annotated, see Figure 4 and 5. This works because the underlying OPMX object contains
discretised data. Whereas annotated would by default return a logical vector in that case,
the lmap argument can be used to create a numeric vector on the fly. See the manual for
applications of lmap.

R> anno.k12.bin <- annotated(coli.k12, output = param_names("disc.name"),

lmap = 1:3)
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Figure 2: Respiratory data (mean maximum height) of Escherichia coli strain K12 mapped
on the KEGG Galactose pathway. The aggregated measurement data are represented by
according colours and mapped on the corresponding substrates (circles) in the graph. (If the
resolution of this figure is insufficient, this is due to PDF compaction, not due to the pathview
graphics.)
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Figure 3: Respiratory data (mean maximum height) of Escherichia coli type strain DSM
30083T mapped on the KEGG Galactose pathway. The aggregated measurement data are
represented by according colours and mapped on the corresponding substrates (circles) in the
graph. (If the resolution of this figure is insufficient, this is due to PDF compaction, not due
to the pathview graphics.)
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Figure 4: Respiratory data (mean maximum height, discretised) of Escherichia coli strain K12
mapped on the KEGG Galactose pathway. The aggregated and discretised measurement data
are represented by according colours and mapped on the corresponding substrates (circles) in
the graph. (If the resolution of this figure is insufficient, this is due to PDF compaction, not
due to the pathview graphics.)

R> anno.type.bin <- annotated(coli.type, output = param_names("disc.name"),

lmap = 1:3)

R> coli.map.k12.bin <- opm_path(cpd.data = anno.k12.bin, species = "ko",

out.suffix = "k12.ko.bin", pathway.id = "00052",

limit = list(gene = 2, cpd = c(1, 3)), bins = list(gene = 0.5, cpd = 3))

R> coli.map.type.bin <- opm_path(cpd.data = anno.type.bin, species = "ko",

out.suffix = "type.ko.bin", pathway.id = "00052",

limit = list(gene = 2, cpd = c(1, 3)), bins = list(gene = 0.5, cpd = 3))

By using the species argument it is possible to include the genome annotations available
from KEGG (see above for details). Since in KEGG no genome for the E. coli type strain
is available, we will demonstrate the usage of this argument only for strain K12 (= DSM
18039). One could choose the annotation of strain E. coli “K-12 MG1655” from the year 1997,
which corresponds to species = "eco" (other K12 variants are available in KEGG). In the
corresponding figure, genes (boxes) without annotation information in the chosen genomes
remained white without any labelling. But when using na.col, entries without annotation
information are highlighted with the colour of choice.



12 Substrates in opm (March 3, 2016)

Figure 5: Respiratory data (mean maximum height, discretised) of Escherichia coli type
strain DSM 30083T mapped on the KEGGGalactose pathway. The aggregated and discretised
measurement data are represented by according colours and mapped on the corresponding
substrates (circles) in the graph. (If the resolution of this figure is insufficient, this is due to
PDF compaction, not due to the pathview graphics.)
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R> coli.map.k12.eco <- opm_path(cpd.data = anno.k12, species = "eco",

out.suffix = "k12.eco", pathway.id = "00052", na.col = "pink")

We do not run this code (and show the resulting figure) here because it involved installing
a Bioconductor package that includes the KEGG annotation for species = "eco". This
package would be selected and downloaded automatically, so this is rather convenient for the
user, but we refrain from modifying user libraries within a vignette.

With this type of visualisation users can detect metabolic steps for which no genes are anno-
tated, but PM data indicate metabolic activity. This can help improving genome annotation.
In the chosen example, the failure of the strain to metabolise Galactose is in accordance with
the lack of some genes in the genome annotation, causing gaps in the pathway for Galactose
catabolism.

4.2.2. Finding substrates within pathways

Note that from the annotation objects anno.k12 or anno.type, respectively, comprising 96
substrates, only 13 are represented in the shown pathway map in Figure 2 and 3. This is
no wonder because the PM plates are not arranged according to their affiliation to KEGG
pathways. It often makes sense to restrict the considered substrates beforehand if the pathway
of interest is already known. This particularly saves running time in the calls to opm_mcp and
the annotated method for opm glht objects.

When using the option how = "value", annotated yields a numeric matrix with substrate
names as row names and pathway ID as column names. Whereas the main use of such a
matrix is described in Section 5, it can also be used simply to show the distribution of
substrates over pathways. Ones and zeros indicate whether or not a certain substrate (row)
is contained in a certain pathway (column). NAs indicate that a substrate has no KEGG ID,
as for example well A01 which harbours the (pseudo-)substrate “Negative Control”.

By summing up the columns and sorting the resulting vector, the user gets a ranking of the
columns (pathways) indicating how many substrates are covered.

R> anno.k12.mat <- annotated(coli.k12, how = "value")

R> col.sums <- sort(colSums(anno.k12.mat, na.rm = TRUE), decreasing = TRUE)

R> col.sums[1:10]

exact_mass Value

17697.97 14820.75

map01100 Carbohydrates

45.00 26.00

map02010 Chemicals

22.00 21.00

map01120 Third-class OTC drugs

19.00 19.00

Inorganic and organic chemicals Monosaccharides

18.00 18.00

In the next example we search for the substrates represented in pathway number “00052”,
which is Galactose metabolism. Then we extract the positions of these substrates (for the
plate type of interest) with find_positions:
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R> e.subs <- rownames(anno.k12.mat)[!is.na(anno.k12.mat[, "map00052"]) &

anno.k12.mat[, "map00052"] > 0]

R> e.subs.pos <- find_positions(e.subs, type = "Gen III")

R> e.subs.pos

Sucrose Stachyose D-Raffinose

"A07" "A09" "B01"

a-D-Lactose D-Melibiose N-Acetyl-D-Galactosamine

"B02" "B03" "B08"

D-Glucose D-Mannose D-Fructose

"C01" "C02" "C03"

D-Galactose D-Sorbitol myo-Inositol

"C04" "D01" "D04"

Glycerol

"D05"

4.2.3. Visualisation of differences of group means in pathway maps

Next, we show the maximum-height values from the 13 substrates represented in the Galactose
pathway map (number “00052”) in Figure 6 to demonstrate the sizes of their differences.
Remember that the vector e.subs.pos contains the positions of the substrates of interest as
a character string. It can thus directly be used to subset OPMX objects.

R> old.mar <- par(mar = c(3, 2, 2, 2)) # adapt plotting settings

R> ci_plot(object = coli.sub[, , e.subs.pos],

as.labels = list("Species", "Strain"), subset = "A", x = "bottomright",

draw.legend = TRUE, crr = 1.33, legend.field = NULL)

R> par(old.mar) # reset plotting settings

Straightforwardly, we compute a multiple comparison between only the 13 substrates included
in the Galactose metabolism pathway map. Our example compares the type strain with K12;
each corresponding 95% Confidence Interval (CI) for differences of means for the chosen
substrates is shown in Figure 7.

R> coli.comp <- opm_mcp(coli.sub[, , e.subs.pos],

output = "mcp", model = ~ J(Well + Strain), linfct = c(Pairs = 1))

The annotation vector for the differences of means can be obtained by simply applying
annotated to the opm glht object. The direct mapping of these differences between the
two strains on the Galactose pathway is shown in Figure 8.

R> coli.comp.map <- opm_path(cpd.data = annotated(coli.comp), species = "ko",

out.suffix = "coli.comp.ko", pathway.id = "00052")

In analogy to the last example, the function annotated can be used to produce categorical
annotation vectors for the differences of means. Such vectors are very useful because they
can specifically highlight the statistically significant differences, and particularly those that
are significantly larger than a certain biologically relevant minimum effect size. Thus the full
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Figure 6: Point estimates and 95% confidence intervals for the single maximum-height values
of the two E. coli strains for the subset of substrates represented in the Galactose pathway
map.
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Figure 7: Point estimates and 95% confidence intervals for the differences of means between
the two E. coli strains for the subset of substrates represented in the Galactose pathway map.
The blue dashed line indicates a minimal effect size of 150 as used in Figure 10. The default
is 0, as used in Figure 9.
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Figure 8: Respiration differences between E. coli K12 and DSM 30083T regarding the
maximum-height values mapped on the Galactose pathway. Compare also Figure 7, which
directly depicts the magnitude of the differences. (If the resolution of this figure is insufficient,
this is due to PDF compaction, not due to the pathview graphics.)
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power of the functions from the multcomp package underlying opm_mcp (see the main tutorial
and the manual for details) is available when visualising PM data in pathway graphs.

The mapping of indicators of the significance of the differences between the two strains re-
garding the Galactose pathway is shown in Figure 9 and 10. Because we chose the “upwards”
running mode, up to three colours are used in the map, indicating whether the performance
difference is significantly larger than the minimum effect size, insignificantly different from the
minimum effect size, or significantly smaller than the minimum effect size. In Figure 9, the
default minimum effect size of zero is chosen. Figure 10 shows the results for a user-defined
minimum effect size. This can be set using a short-cut notation indicating both the mini-
mum effect size and the kind of comparison to be conducted. The manual lists all possible
short-cuts. Remember the use of the lmap argument.

R> # ✬upwards✬ comparison, default minimum effect size

R> cat.coli.comp.0 <- opm_path(

cpd.data = annotated(coli.comp, output = "upwards", lmap = 1:3),

species = "ko", out.suffix = "cat-coli-comp-0", pathway.id = "00052",

limit = list(gene = 2, cpd = c(1, 3)), bins = list(gene = 0.5, cpd = 3))

R> # ✬upwards✬ comparison, 150 units as minimum effect size

R> cat.coli.comp.150 <- opm_path(

cpd.data = annotated(coli.comp, output = "✬150", lmap = 1:3),

species = "ko", out.suffix = "cat-coli-comp-150", pathway.id = "00052",

limit = list(gene = 2, cpd = c(1, 3)), bins = list(gene = 0.5, cpd = 3))

4.2.4. Visualisation of pathway maps in Graphviz layout

In addition to the native KEGG visualisation, pathview can use the Graphviz library for
an alternative visualisation approach. As return value, the function always generates a list
containing two data frames. The data frame “plot.data.gene” contains the data for mapping
the genes and, analogously, “plot.data.cpd” stores the compound-related data.

In the examples detailed above, a variety of such objects have already been generated, e.g.,
coli.map.k12 or the coli.map.types (both described in Section 4.2.1 and visualised in
Figure 2 and 3 therein).

Next, we show how to produce graphics from these objects instead of directly from KEGG.

R> coli.graphvizmap.k12 <- opm_path(cpd.data = anno.k12, species = "ko",

afactor = 1500, kegg.native = FALSE, out.suffix = "graphvizk12.ko",

pathway.id = "00052", sign.pos = "bottomleft", key.pos = "bottomright")

Although pathview offers quite a number of arguments specifically for kegg.native=FALSE,
there are, unfortunately, only limited options for tuning the size of the nodes or the font
sizes in this visualisation. The scaling of text and symbols can be tuned with the usual cex
argument (for kegg.native = FALSE the default is cex = 0.5). The text.width argument
can be used to specify the length for text wrapping. In principle, the node size can be fine-
tuned with afactor, however even the help page of the pathview function emphasises that
“its effect is subtler than expected”. Together with the automated rendering by the graphviz
layout engine it might be difficult to obtain a visually satisfying map of the pathway of
interest.
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Figure 9: Indicators of the significance of the respiration differences between E. coli K12
and E. coli DSM 30083T regarding the maximum-height values mapped on the Galactose
pathway. Blue, significantly larger than the chosen minimum effect size of 0 (default); grey,
insignificantly different from the chosen minimum effect size; yellow, significantly smaller than
the chosen minimum effect size. (If the resolution of this figure is insufficient, this is due to
PDF compaction, not due to the pathview graphics.)
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Figure 10: Indicators of the significance of the respiration differences between E. coli K12
and E. coli DSM 30083T regarding the maximum-height values mapped on the Galactose
pathway. Blue, significantly larger than the chosen minimum effect size of 150; grey, insignif-
icantly different from the chosen minimum effect size; yellow, significantly smaller than the
chosen minimum effect size. (If the resolution of this figure is insufficient, this is due to PDF
compaction, not due to the pathview graphics.)
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Figure 11: Respiratory data (mean maximum height) of Escherichia coli strain K12 mapped
on the KEGG Galactose pathway and rendered by pathview using the Graphviz layout engine.
Compare Figure 2, which shows the native KEGG rendering of these data. See the main
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resolution of this figure is insufficient, this is due to PDF compaction, not due to the pathview
graphics.)
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5. Finding the pathways of interest

In many experimental approaches, the identification of the pathway(s) of interest is one of
the main subjects of research.

The information accessible via annotated can serve as input for suitable statistical proce-
dures in order to assess and rank the observed metabolic capabilities (i.e. respiration on the
substrates) with respect to their ability to predict a given response. Beside the identification
of pathways of interest to be used when drawing the opm results in a graph, as detailed in
the previous section, such results can further be used as a starting point when searching for
a causal explanation of the given opm results.

5.1. Boosting as a tool to identify important substrates

In the following example we use boosting to estimate a linear model in order to determine im-
portant substrates that describe the differences between the two strains. Boosting (Bühlmann
and Yu 2003; Hothorn, Bühlmann, Kneib, Schmid, and Hofner 2010) is a method to fit a
statistical model that additionally selects the most important predictor variables. Optimal
stopping of the algorithm can be done via cross-validation. For a detailed hands-on introduc-
tion to boosting methods using the package mboost (Hothorn, Bühlmann, Kneib, Schmid,
and Hofner 2013) we refer to Hofner, Mayr, Robinzonov, and Schmid (2014).

At first, we need to load the package:

R> ## load package mboost

R> library("mboost")

R> ## set seed (for reproducible results)

R> set.seed(1907)

Now we need to extract and restructure the data using custom methods available in opm and
a few further adaptations. We use all available biological and technical replicates and obtain
the annotation from KEGG:

R> ## use multiple biological replicates:

R> coli.sub1 <- subset(vaas_et_al, list(Species = "Escherichia coli",

Experiment = c("First replicate", "Second replicate")))

R> ## reformat and add substrate information

R> data <- annotated(opm_mcp(coli.sub1,

~ Strain + Experiment + Slot + ✬Plate number✬,

output = "data", in.parens = FALSE), how = "data.frame")

R> data <- data[complete.cases(data),

names(data) %in% c("Plate.number", "Strain", "Experiment",

"Slot", "Value") | grepl("^map", names(data))]

R> ## add an ID per biological / technical replicate for usage of

R> ## brandom (subject-specific random effect, see below):

R> data$ID <- extract_columns(data, c("Plate.number", "Strain", "Experiment"),

direct = TRUE, factor = TRUE)

R> ## now the plate number is not needed any more

R> data$Plate.number <- NULL

R> ## have a look at a random subset of the resulting data set

R> data[sample(1:nrow(data), size = 5), 1:7]
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Strain Experiment Slot Value map00010 map00020 map00030

113 DSM30083T First replicate A 286.02512 FALSE FALSE FALSE

3044 DSM18039 Second replicate B 38.97180 FALSE TRUE FALSE

802 DSM18039 Second replicate B 275.82110 FALSE FALSE FALSE

2130 DSM18039 Second replicate B 54.33588 FALSE FALSE FALSE

2157 DSM30083T First replicate A 213.73781 FALSE FALSE FALSE

Each row of the resulting data set describes the measurement of one well, for one replicate,

within one strain. Starting from map00010 we find the annotations that indicate whether or
not this well can be mapped to the corresponding substrate class or pathway. Note that a
well can potentially be found in multiple substrate classes or pathways.

In the next step, we want to model the differences of the measured values between the two
strains. Therefore we set up a log-linear model of the following form:

log(y) =β0 + β1strain + β2experiment + β3slot + bID+

+ β4,1IPW1 + β4,2IPW2 + . . .+

+X(strain) · β5,1IPW1 +X(strain) · β5,2IPW2 + . . . ,

where y is the measured PM value, β0 is an overall intercept, β1 is the overall strain effect
(the difference between strains irrespective of the pathway or substrate), and β2 and β3 are
the effects of the experiment and slot. These are used to correct for possible confounding.
Additionally, we use a random effect for the replicate (bID) to account for subject-specific
effects. The pathway-specific effects β4,j represent the differences of the PM values between
pathways and substrates, where IPWj is an indicator function, which is 0 if the well does not
belong to the pathway and 1 if it does, i.e., IPWj corresponds to the annotations discussed
above.

The most interesting part is given by β5,j : X(strain) is a strain-specific function which is either
−1 (strain DSM30083T) or 1 (strain DSM18039). The coefficients β5,j hence represent the
deviation of the strains from the global effect. If β5,j = 0, no strain-specific effect is present,
i.e., the pathway j does not differ between strains. If β5,j 6= 0, the difference between the two
strains is twice this effect, i.e., X(strain1)·β5,j−(X(strain2)·β5,j) = 1·β5,j−(−1·β5,j) = 2β5,j .

Now we can set up and estimate the model. Be careful as this takes a while.

R> ## re-define linear base-learner to have 2 degrees of freedom

R> bols2 <- function(a, ...)

bols(a, df = 2, ...)

R> ## fit offset model with main effects only (and use very many iterations):

R> options(contrasts = c("contr.treatment", "contr.poly"))

R> offsetmod <- gamboost(log(Value) ~ ., data = data, baselearner = bols2,

control = boost_control(mstop = 6000, nu = 0.2))

R> ## now start from the offset model and add interaction effects (which

R> ## represent differences between strains).

R> options(contrasts = c("contr.sum", "contr.poly"))

R> ## set up model formula

R> fm <- as.formula(paste(c("log(Value) ~ bols(Strain, intercept = FALSE, df = 1)",

## add variables as main effects

sprintf("bols(%s, intercept = FALSE, df = 1)", names(data)[-c(1, 4)]),

## add the interaction terms (i.e. strain-specific effects)

sprintf("bols(%s, by = Strain, intercept = FALSE, df = 1)",
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names(data)[-c(1, 4)])),

collapse = " + "))

R> ## estimate model

R> mod <- gamboost(fm, data = data, offset = fitted(offsetmod),

control = boost_control(mstop = 250, nu = 0.2))

R> options(contrasts = c("contr.treatment", "contr.poly"))

The offset model fits all main effects, i.e. differences in the maximum curve height with
respect to different substrate groups or pathway maps while neglecting possible differences
in substrate/map effects between strains. Additionally, we specify effects for the strain, the
experiment and the slot to account for overall differences between strains, experiments and
slots. To account for repeated measurements we include a random effects term in the model.
(Currently we use one random effect for both technical and biological replicates; this is
appropriate as we currently do not really want to differentiate between the two types of
variability. However, more complex random effect terms might be used as well.)

In a second step, we start from the offset model and we allow for interactions between strain
and the substrate/map effects and check if any are present. These interactions represent
differential PM expressions between strains.

Boosting is an iterative procedure where the major tuning parameter is the number of boosting
steps (mstop). To find the optimal model, we need to use cross-validation techniques (Hofner
et al. 2014; Mayr, Hofner, and Schmid 2012). This can be easily done using:

R> ## to speed up computation on linux systems set number of

R> ## cores in cvrisk: e.g. mc.cores = 25

R> cvr <- cvrisk(mod, grid = 1:2000)

Note that this might take some time depending on your system.

Now, we subset the model to the optimal number of stopping iterations:

R> ## optimal number of iterations

R> mstop(cvr)

R> ## plot the cross-validation results

R> plot(cvr)

R> ## finally set model iterations to this number

R> mstop(mod) <- mstop(cvr)

If one uses cross-validation techniques to find the optimal stopping iteration, boosting intrin-
sically selects variables that best predict the outcome, i.e., here the log(PM) values that differ
between the two E. coli strains with respect to certain substrates. However, cross-validation
tends to select too many variables to enter the model (here: 13.3% of the base-learners where
selected to enter the model; this makes 37 out of 279 ). Thus, to refine the selection process,
we use stability selection to determine which of the (interaction) effects are selected (while
controlling the per-family error rate).

5.2. Boosting with stability selection

Stability selection (Meinshausen and Bühlmann 2010) is an additional screening tool that
allows the user to determine which of the selected variables are “stable” variables, i.e. which
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are variables that always “pop-up” in random subsets of the data. Additionally, stability
selection has a built-in error control (for the per-family error rate, see Dudoit, Shaffer, and
Boldrick 2003). The application of boosting with stability selection to PM data has been
explored in (Hofner, Boccuto, and Göker 2015).

In our example the maximum acceptable error is set to 1.5, i.e. we accept at maximum 1.5
noise variables to be chosen by stability selection by chance. The cut-off value determines
which inclusion frequency is at least required to term a variable stable. In our example this is
chosen to be 0.6, but other values in, say (0.6, 0.9), are possible as well. In general, stability
selection is relatively insensitive to the choice of the cut-off.

R> ## use stability selection to extract important pathways / substrate classes

R> ## to speed up computation on linux systems set number of

R> ## cores in stabsel: e.g. mc.cores = 25

R> stab <- stabsel(mod, cutoff = 0.75, PFER = 1.5, assumption = "unimodal")

Plotting the results of stability selection shows which of the pathways and substrate groups
are differentially expressed between the two strains (see Figure 12). The stability paths
(Figure 12, left) show the inclusion frequencies per variable dependent on the number of
boosting iterations. This graphical display mainly helps to verify whether or not the number
of boosting iterations was sufficient. In this case, the selection paths stay constant after a
certain point, indicating a sufficiently large number of boosting iterations. As an alternative
to the stability paths we can plot the maximum inclusion frequency (Figure 12, right). Higher
inclusion frequencies indicate that the substrate is more important. Furthermore, we see that
only the top 15 variables are stable and thus can be considered to play a substantial role.
This is a much sparser model than the one obtained from cross-validation.

R> ## extract variable names

R> nms <- gsub(", ", " by ", variable.names(mod))

R> ## adapt plotting settings

R> old.par <- par(mar = c(4, 0.1, 0.1, 11.5), mfrow = c(1, 2))

R> plot(stab, type = "paths", main = "", labels = nms)

R> par(mar = c(4, 11.5, 0.1, 0.1))

R> plot(stab, type = "maxsel", main = "", np = 20, labels = nms)

R> par(old.par) # reset plotting settings

In the next step we extract the coefficient estimates of the stable variables. We set the
stopping iteration to the optimal iteration obtained by cross-validation and extract only the
coefficients of the stable variables:

R> mstop(mod) <- mstop(cvr)

R> cf <- coef(mod, which = selected(stab))

R> ## make cf a vector

R> beta <- unlist(cf)

R> old.par <- par(mar = c(4, 15, 0.1, 0.1))# adapt plotting settings

R> ## plot 2 * beta as this is the difference between the two strains

R> plot(2 * sort(beta), 1:length(beta),

type = "n", yaxt = "n",

ylab = "", xlab = expression(paste("Difference between strains (",

2 * hat(beta), ")")))
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Figure 12: Selected pathways and substrate classes. From the stability selection paths plot
one can deduce that the number of iterations was sufficiently large as all selection paths stop
to increase after approx. 100 iterations (left). All variables that cross the threshold value
(horizontal grey line; π̂threshold = 0.75) at some point are termed “stable”, i.e., are chosen by
stability selection. The maximum inclusion frequency π̂ for the top 20 variables as determined
by stability selection is displayed in the right figure. All variables with inclusion frequencies
π̂ ≥ π̂threshold, i.e., right of the grey vertical line are stable variables.

R> abline(h = 1:length(beta), lty = "dotted", col = "grey")

R> points(2 * sort(beta), 1:length(beta), pch = 19)

R> nms <- gsub(", ", " by ", variable.names(mod, which = selected(stab)))

R> axis(2, at = 1:length(beta), nms[order(beta)], las = 2)

R> abline(v = 0, col = "grey")

R> par(old.par) # reset plotting settings

From Figure 13, we can see that map04070 explains the largest difference between the two
strains (as the absolute value is biggest) followed by Phenylpropanoids, map00072 and
map00053. While the first three variables have a negative sign, indicating that DSM30083T is
increased compared to strain DSM18039, map00053 has a positive sign, indicating an increase
in strain DSM18039.

5.2.1. Evaluation of results

In the next step we will augment the boosting approach with an opm_mcp analysis for confirm-
ing whether the reactions on carbohydrate wells are indeed more strongly different between
the two strains than those on other wells.

First, we prepare a data matrix with the differences between the two E. coli strains (as
computed in section 4.2.3) and add potential explanatory variables from KEGG. Please
refer to the manual and Section 4.1 for an explanation of the usage of annotated with the
argument how = "data.frame". Again, the comparison applies to the default parameter
given by opm_opt("curve.param"); see the manual for details.

R> coli.comp <- opm_mcp(coli.sub, output = "mcp",
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Figure 13: Coefficients of stable variables (in the optimal boosting iteration). Positive signs
indicate an increase in strain DSM18039 compared to DSM30083T, and negative signs vice
versa.

model = ~ J(Well + Strain), linfct = c(Pairs = 1))

R> coli.anno <- annotated(coli.comp, how = "data.frame")

R> coli.anno <- coli.anno[complete.cases(coli.anno), ]

Now, the positions of the substrates either belonging to the category “Carbohydrates” or not
to it are determined and afterwards stored in two vectors.

R> carb.pos <- rownames(coli.anno)[coli.anno$Carbohydrates == TRUE]

R> noncarb.pos <- rownames(coli.anno)[coli.anno$Carbohydrates == FALSE]

R> carb.pos <- find_positions(carb.pos, plate_type(coli.sub))

R> noncarb.pos <- find_positions(noncarb.pos, plate_type(coli.sub))

We can now generate the contrast matrix needed for the computation of the multiple compar-
isons between the two strains for precisely these two subsets of substrates. As recommended
in the main tutorial, this should be done by first using opm_mcp to generate auxiliary contrast
matrices, which here provide the dimensions and column names for the final contrast matrix.

R> contr.carb <- opm_mcp(coli.sub[, , carb.pos], linfct = c(Dunnett = 1),

model = ~ J(Well + Strain), output = "contrast")[[1]]

R> contr.noncarb <- opm_mcp(coli.sub[, , noncarb.pos], linfct = c(Dunnett = 1),

model = ~ J(Well + Strain), output = "contrast")[[1]]

The final contrast matrix is set up by concatenating the necessary numeric vectors, setting
labels for the comparisons and adding the column names.

R> contr <- rbind(

"Carbohydrates/DSM18039 - Carbohydrates/DSM30083T" = c(

rep(c(2 / ncol(contr.carb), -2 / ncol(contr.carb)),
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Figure 14: Point estimates and 95% confidence intervals for the comparison of the two E. coli

strains pooled over substrates classified as “Carbohydrates” and “non-Carbohydrates”. The
difference between the two strains is much larger regarding the carbohydrate substrates than
regarding the remaining ones.

times = ncol(contr.carb) / 2),

rep(0, times = ncol(contr.noncarb))

),

"non-Carb./DSM18039 - non-Carb./DSM30083T" = c(

rep(0, times = ncol(contr.carb)),

rep(c(2 / ncol(contr.noncarb), -2 / ncol(contr.noncarb)),

times = ncol(contr.noncarb) / 2)

)

)

R> colnames(contr) <- c(colnames(contr.carb), colnames(contr.noncarb))

This contrast matrix contr can now directly be fed into opm_mcp.

R> carb.test <- opm_mcp(coli.sub[, , c(carb.pos, noncarb.pos)], linfct = contr,

m.type = "lm", model = ~ J(Well + Strain))

The results of the two comparisons can be plotted as usual, see Figure 14. According to
the interpretation provided in the figure caption the analysis shows that one of the strains
performs stronger than the other one particularly regarding carbohydrate utilisation.

As an alternative to boosting, one could also apply Random Forest (RF) for variable selection,
e.g. implemented in the randomForest package (Liaw and Wiener 2002). See Touw, Bayjanov,
Overmars, Backus, Boekhorst, Wels, and van Hijum (2012) for a review of RF properties that
allow for maximising the biological insights that can be extracted from complex OMICS
data. Boulesteix, Janitza, Kruppa, and König (2012) emphasise the applications of RF to
computational biology with special attention to practical aspects such as parameter selection
and major pitfalls and biases of RF and its Variable Importance Measure (VIM).
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Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures
Braunschweig

Telephone: +49/531-2616-272
Fax: +49/531-2616-237
E-mail: markus.goeker@dsmz.de
URL: www.dsmz.de

http://dx.doi.org/10.3414/ME11-02-0030
http://dx.doi.org/10.1111/j.1467-9868.2010.00740.x
http://dx.doi.org/10.1093/nar/gki866
http://dx.doi.org/10.1093/nar/gki866
http://dx.doi.org/10.1093/bib/bbs034
mailto:markus.goeker@dsmz.de
www.dsmz.de

	Introduction
	Preparation
	Accessing plate and substrate information
	Available plate information
	Available substrate information

	Visualisation of PM information within pathway maps
	Providing suitable input data
	Visualisation in pathway maps using pathview
	Visualisation of group means in pathway maps
	Finding substrates within pathways
	Visualisation of differences of group means in pathway maps
	Visualisation of pathway maps in Graphviz layout


	Finding the pathways of interest
	Boosting as a tool to identify important substrates
	Boosting with stability selection
	Evaluation of results


	Acknowledgements

