

Defining biologically meaningful molecular operational taxonomic units

M. Göker

Why molecular taxonomy?

Definition:

Establishing a (informal or even formal) taxonomy of organisms based only on molecular sequences

Uses:

- Detection of cryptic and pseudocryptic species
- Detection of misidentifications and mislabelled sequences in public databases
- Identification of juvenile specimens
- Analysis of environmental samples (e.g. metagenomics)

Example: (pseudo-)cryptic species

ITS/LSU rDNA data of the genus *Hyaloperonospora* (Peronosporales, Oomycetes) (Göker et al. 2009)

=> Two genetically distinct but microscopically identical species on *Draba verna* host plants

Threshold-based clustering

- Calculate distance
 d(i,j) between each pair
 of sequences i and j
- Define a threshold T
- Principle: if d(i,j) <= T, assign i and j to the same molecular operational taxonomic unit (MOTU)

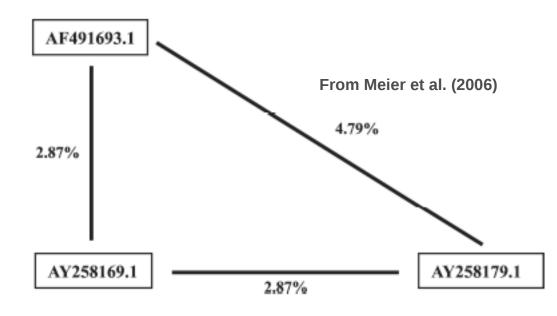


FIGURE 1. Pairwise distances for three Anopheles sequences (AF491693.1, AY258179.1 = A. maculipennis; AY258169.1 = A. messae). All belong to the same 3% DNA profile, although one pairwise distance exceeds the threshold.

=> Can lead to inconsistencies if formulated in that way

Impact of the clustering algorithm

- A distance $d(i,j) \le T$ is called <u>link</u>
- An additional parameter, the "linkage fraction" *F*, determines how many links between an object and a cluster are necessary to include the object in the cluster

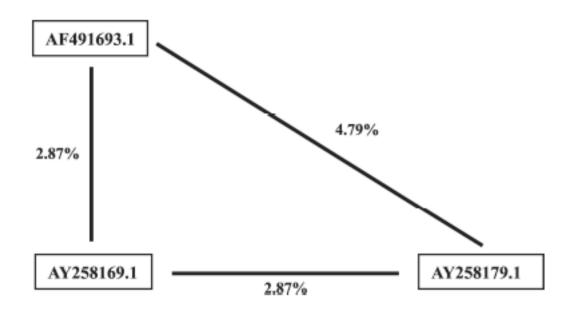
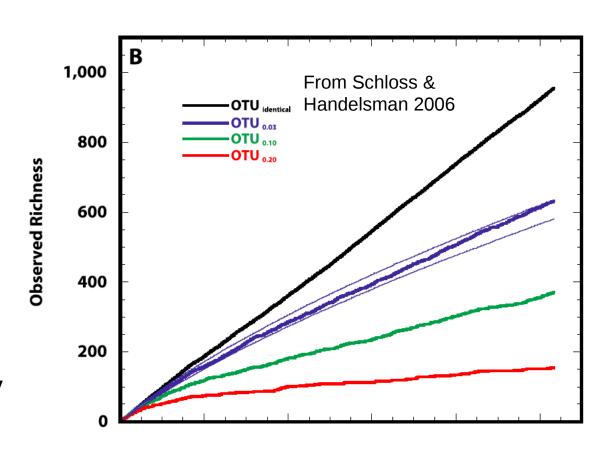


FIGURE 1. Pairwise distances for three *Anopheles* sequences (AF491693.1, AY258179.1 = A. maculipennis; AY258169.1 = A. messae). All belong to the same 3% DNA profile, although one pairwise distance exceeds the threshold.


- => Here, 1 cluster for $F \le 0.5$, but 2 clusters otherwise!
- => Lower *F* values allow higher within-cluster divergence

How to choose the clustering parameters?

Example:

- Species richness of soil bacteria estimated from 16S rDNA sequences
- Question: Has saturation been obtained?
- Obvious dependency on *T*

=> Choice of parameters has serious consequences for total biodiversity estimates

The debate between traditional and molecular taxonomists

Ongoing intense (and sometimes hostile) debate between molecular taxonomists and traditional morphologists, particularly in the context of DNA barcoding

Criticisms of molecular taxonomy:

- Values of *T* used for clustering differ in the literature, even if applied to the same groups of organisms and molecular markers
- Values of *T* are often based on subjective criteria or on a tradition that emerged in recent years for the sake of comparability between studies
- Genetic divergence may differ between morphologically defined lineages
- A smaller distance (or a higher similarity) does not necessarily indicate a closer phylogenetic relationship

=> How can we maximize the agreement between traditional and molecular taxonomy?

Clustering optimization

- Partition := non-hierarchical, non-overlapping classification
- Many biological data are represented as partitions (e.g. assignment of sequences to species):
- Non-hierarchical clustering also results in a partition, e.g.:

Accession number	Organism
EF050035	Pseudoperonospora cubensis
EF174888	Peronospora aestivalis
EF174890	Peronospora sepium
EF174891	Peronospora fulva
EF174894	Peronospora lathyri-verni
EF174944	Peronospora orobi

.. ...

Accession number	Cluster number
EF050035	29
EF174888	26
EF174890	25
EF174891	24
EF174894	27
EF174944	27

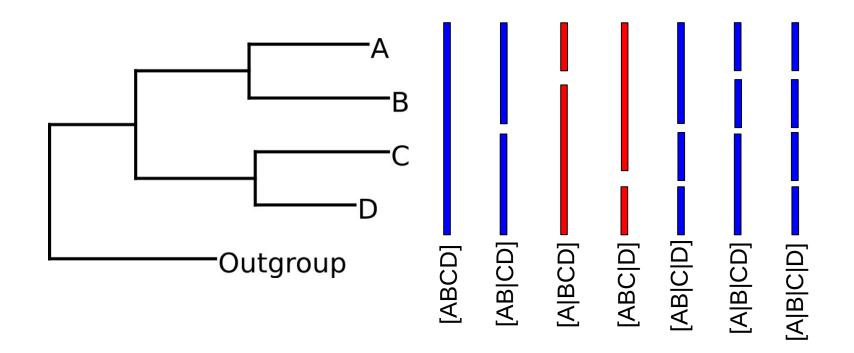
Approach:

- Use set of specimens identified using traditional techniques as reference points
- Determine the clustering parameters that maximize the agreement with a reference partition
- Do not require that full agreement can be obtained

Optimizing molecular taxonomy

Comparing partitions

3 example
partitions of 7
objects


Object	Fruit type	Colour	Condition			
Α	Apple	Green	Fresh			
В	Lemon	Yellow	Fresh			
С	Cherry	Red	Rotten			
D	Apple	Green	Fresh			
E	Cherry	Red	Fresh			
F	Lemon	Yellow	Rotten			
G	Apple	Green	Rotten			

		1			/ ·	
		Same Diff	ferent		Same [Different
Observed values	Same	5	0	Same	1	4
Obscived values	Different	0	16	Different	8	8
	Same Different			Same [Different	
Expected values	Same	1.19	3.81	Same	2.14	2.86
	Different	3.81	12.19	Different	6.86	9.14
Rand Index	(5+16)/ 1.0	(5+0+0+	16) =	(1+8)/(1 0.43	L+4+8+	8) =
Expected Index	(1.19+1 (5+0+0-	.2.19)/ +16) = 0.	.64	(2.14+9 0.54).14)/(1	+4+8+8) =
Modified Rand Index (MRI)	(1.0-0.6 1.0	64)/(1.0-0).64) =	(0.43-0. -0.24	.54)/(1.	0-0.54) =

- Rand index (Rand 1971): traverse all pairs of objects and determine proportion of those being in the same cluster in *both* partitions or in a different cluster in *both* partitions
- Modified Rand index (Hubert & Arabie 1985): corrects for chance (by relating to the expected Rand index for two random partitions with the same cluster number and sizes)

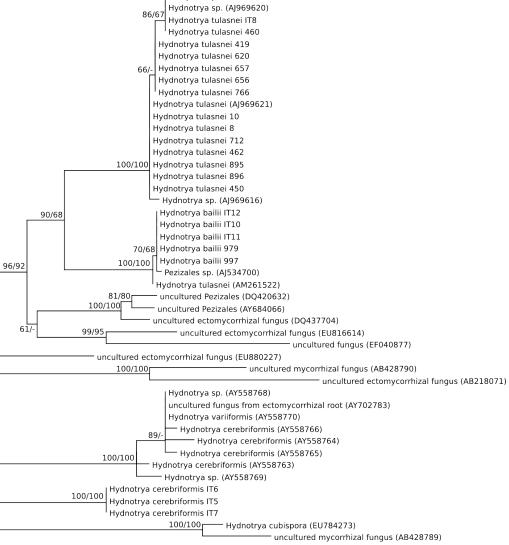
Why trees don't help

A phylogenetic tree rules out certain classifications (e.g. red ones), but is compatible with many others (blue ones)

Example: *Hydnotrya* ITS rDNA

 Check current taxonomic affiliations of sequences

10.01

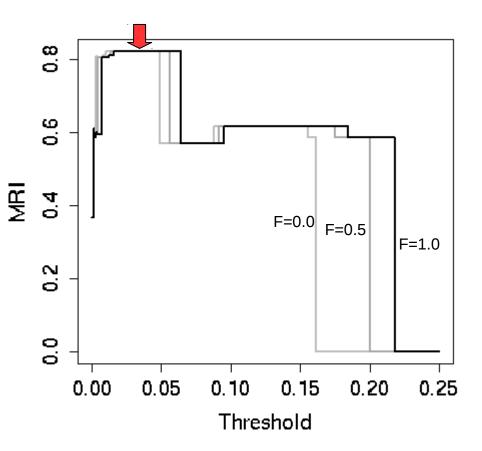

 Assign so far unassigned sequences to taxa

 Estimate total number of species covered by the

dataset 79/100

100/100

100/99


Hydnotrya tulasnei (EU784276)

Example: Hydnotrya

Procedure

1) Restrict dataset to sequences with taxonomic affiliations

Accession number	Organism	Species name present?
EU784276	Hydnotrya tulasnei	Yes
AJ969620	Hydnotrya sp. G-Ht	No
AJ969621	Hydnotrya tulasnei	Yes
AJ969616	Hydnotrya sp. LB-Ht	No
AJ534700	Pezizales sp. B48	No
AM261522	Hydnotrya tulasnei	Yes
DQ420632	uncultured Pezizales	No

2) Conduct clustering optimization with reduced dataset

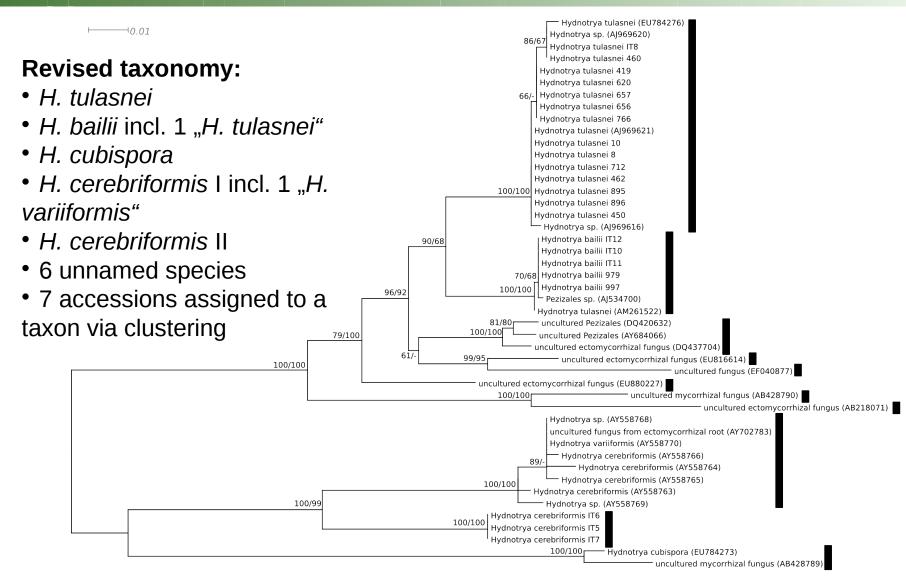
- 3) Place sequences without taxonomic affiliations back in the dataset
- 4) Conduct clustering with all sequences and optimized parameters

Optimizing molecular taxonomy

An overlooked hypogeous fungus

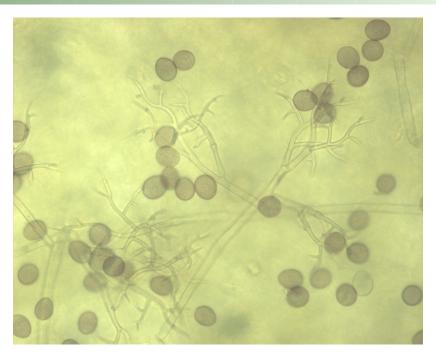
Hydnotrya tulasnei ascocarp (picture: G.Hensel)

Hydnotrya bailii ascocarp (picture: G. Hensel)


Stielow et al., under review:

Distinction between *Hydnotrya bailii* Soehner (1959) and *Hydnotrya tulasnei* (Berk.) Berk. & Broome (1846) has been neglected for 50 years!

Optimizing molecular taxonomy


Up to 50% of the MOTUs may be novel species

Example: Peronospora ITS rDNA

Peronospora sp. on Ocimum basilicum

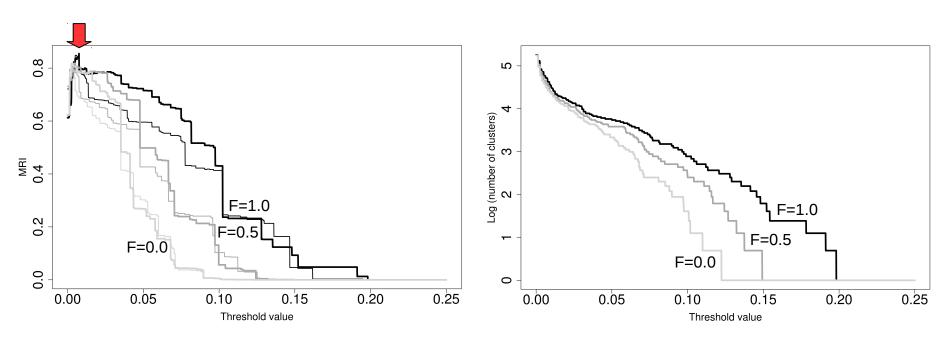
Tasks

- Revise nomenclature of all Genbank Peronospora ITS rDNA sequences
- Check whether a combination of molecular and host plant characters is sufficient to obtain a consistent species concept

Optimizing molecular taxonomy

Example: Peronospora

Procedure

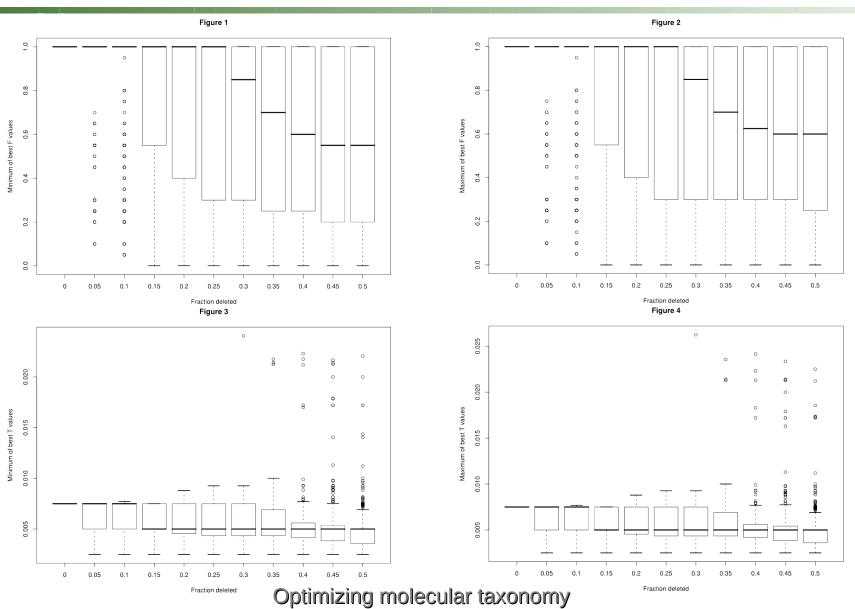

1) Restrict dataset to (a) sequences with taxonomic affiliations and (b) sequences with interpretable host names

Accession number	Organism	Specific host	Species name present?	Host present?
EF614964	Peronospora variabilis	Chenopodium album	Yes	Yes
EF614958	Peronospora sp. SMK20063	Chenopodium ambrosioides	No	Yes
EF614957	Peronospora sp. DAR45530	Chenopodium ambrosioides	No	Yes
EF614955	Peronospora farinosa f. sp. chenopodii	Chenopodium hybridum	Yes	Yes
EF174939	Peronospora sp. GG133		No	No
EF174924	Peronospora sp. HV956		No	No
EF174970	Peronospora trifoliorum		Yes	No
EF174963	Peronospora trifoliorum		Yes	No

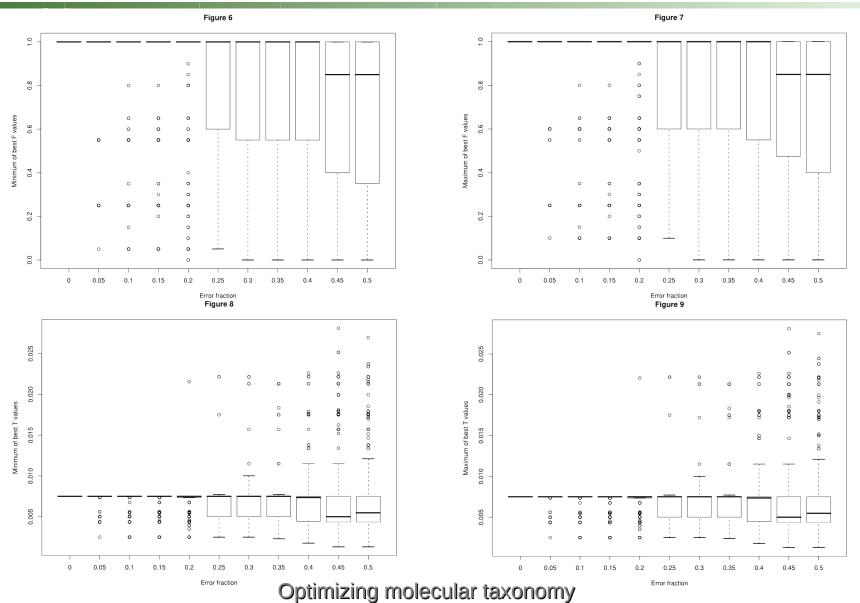
- 2) Conduct clustering optimization with reduced datasets (a) and (b)
- 3) Check for coincidence of results (i.e. of optimal clustering parameters)
- 4) Place sequences without taxonomic affiliations or host information back in the dataset
- 5) Conduct clustering with all sequences and optimized parameters

Example: Peronospora ITS rDNA

- Taxonomy-based optimization: best result (MRI=0.85485) with T=0.0075 and F=1.0 (left picture: thick lines)
- Host-based optimization: best result (MRI=0.85204) with T=0.0075 and F=1.0 (left picture: thin lines) => exactly the same optimum
- Resulting in 117 clusters



Example: Peronospora ITS rDNA



Robustness against sampling bias

Robustness against errors in the reference partition

Summary

Clustering optimization based on the agreement between partitions...

- leads to MOTUs with highest agreement to traditional taxonomy, but it is robust against errors in such a reference partition
- connects traditional and modern taxonomic disciplines by specifically addressing the issue of how to optimally account for both traditional species concepts and genetic divergence
- can also be used together with different types of reference partitions (e.g. host species of specialized parasites/mutualists)
- leads to biologically reasonable choices for clustering parameters that are also suitable for sequence identification
- is implemented in the OPTSIL software available at http://www.goeker.org/mg/clustering for all major operating systems